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Thispaperisconcernedwith theeffectofaweakspanwise-variablemean-flowdistortion

on the growth of obliqueinstability wavesin a Blasiusboundarylayer. The streamwise

componentof the distortion velocityinitially growslinearly with increasingstreamwise

distance,reachesa maximum,andeventuallydecaysthroughthe actionof viscosity.This

decayoccursslowlyandallowsthedistortionto destabilizethe Blasiusflowovera relatively

largestreamwiseregion.It is shownthat evenrelativelyweakdistortionscancausecertain

obliqueRayleighinstability wavesto grow much fasterthan the usual two-dimensional

Tollmien-Schlichtingwavesthat wouldbe the dominantinstability modesin the absence

of the distortion. The obliqueinstability wavescanthen becomelargeenoughto interact

nonlinearlywithin a commoncritical layer. It is shownthat the resultingnonlinearityis

weakand that the commonamplitudeof the interactingobliquewavesis governedby the

amplitudeevolutionequationderivedin Goldstein& Choi (1989). The implications of these

results for Klebanoff-type transition are discussed.

1. Introduction

Transition to turbulence in boundary layers usually begins with initially linear and non-

interacting instability waves that grow to nonlinear amplitudes as they propagate down-



stream. The first nonlinear stage of evolution - which might more appropriately be re-

ferred to as a modal interaction stage - is usually characterized by the rapid growth of

three-dimensional disturbances due to resonant interactions between instability waves and

between instability waves and streamwise vortices.

This phenomena is usually studied experimentally by exciting the flow with relatively

two-dimensional single-frequency excitation devices. The initial motion, say just down-

stream of the excitation device, should then be periodic in time and reasonably well de-

scribed by linear instability theory - provided, of course, the excitation levels are sufficiently

small. The typical mean flow is relatively two-dimensional and fairly close to a Blasius pro-

file at the low Mach numbers where most of the experiments have been carried out. The

instability wave growth rates should then be small compared to the inverse of the mean

boundary-layer thickness in these experiments.

When flow visualization devices are used, the initial modal interaction stage is evi-

denced by the appearance of A-shaped structures which can either be aligned or staggered

in alternating rows. The aligned arrangement, which occurred in the original Klebanoff

& Tidstrom (1959) and Klebanoff, Tidstrom & Sargent (1962) experiments, is usually re-

ferred to as 'peak-valley' splitting. It is believed to be a complex phenomena (Kachanov

& Levchenko 1984, §5.2) that can be explained in terms of at least three different (rela-

tively weak) resonant-type interaction mechanisms each of which probably plays a role in

one or more of the many experiments that have been carried out to study this phenomena

(Kachanov, Kozlov & Levchenko 1985; Kachanov 1987; Hama & Nutant 1963; Kovasznay,

Komoda & Vasudeva 1962; Nishioka, Asai & I_ida 1979; _nd others).

A resonant-type interaction involving weak streamwise vortices seems to have played
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an important rolein the original Klebanoff & Tidstrom (1959) and Klebanoff et al. (1962)

experiments. The present paper is an attempt to provide a systematic first-principles analy-

sis of this phenomena by using high-Reynolds-number asymptotic methods. There has been

a tendency in the literature to separate such analyzes into wave-wave and wave-vortex in-

teractions. This paper, which brings together a number of recent ideas in order to shed

some light on the Klebanoff-type transition process, turns out to be a combination both of

these approaches.

We first consider the initial linear region, just downstream of the excitation device,

where the instability waves are still small enough so that no significant modal interac-

tions take place. The instability waves will grow on the relatively slow viscous time scale

when the mean flow is two-dimensional, with the two-dimensional mode exhibiting the

most rapid growth. However, even relatively weak spanwise-periodic mean-flow distortions

(i.e. streamwise vortices) can cause certain oblique modes to grow on the inviscid time scale

through a kind of resonant-interaction mechanism first considered for G/Srtler vortices by

Nayfeh (1981) and later by Bennett & Hall (1988), Nayfeh & A1-Maaitah (1988) and Hall

g_ Seddougui (1989). This resonant interaction allows the oblique modes to grow faster

than the plane wave once the Reynolds number becomes sufficiently large. The streamwise

vortices, which are generated whenever quasi-periodic cross-flow velocities exist in the flow,

have streamwise velocity components that initially grow in proportion to the downstream

distance. These velocity components can then become quite large before viscous and/or

nonlinear effects cause them to saturate 1.

1This is related to, but somewhat different than, the algebraic growth mechanisms studied by Ellingsen

Palm (1975), Hultgren & Gustavsson (1981) and Landahl (1990)



It is therefore appropriate to suppose that the spanwise-periodic motions are initiated

by a steady cross flow with spanwise wavenumber, say 2/J, and a pair of equal-amplitude

oblique instability modes with the same streamwise wavenumber and scaled frequency but

opposite spanwise wavenumbers, say 4-/5. These two modes combine to form a standing

wave in the spanwise direction that propagates only in the direction of the free stream.

This situation is typical of wave excitation experiments which often involve relatively long

excitation devices oriented perpendicular to the free-stream direction.

When the Reynolds number is sufficiently large, the streamwise vortices can persist over

streamwise distances that are long enough to enable the oblique modes to reach nonlinear

amplitudes. Since the oblique-mode growth rates turn out to be small compared to the

spanwise wavenumbers in the present analysis, the initial nonlinear interactions are confined

to a localized region centered around the so called 'critical level' where the streamwise

component of the mean-flow velocity is equal to the common phase speed of the oblique

modes. The flow outside the critical layer is still governed by linear dynamics and is given

by the superposition of a Blasius flow, a spanwise-periodic mean-flow distortion and a pair

of oblique instability modes. The common amplitude of the oblique modes is completely

determined by the nonlinear dynamics within the critical layer.

The critical-layer nonlinearity turns out to be weak in the sense that it enters through

an inhomogeneous term in a higher-order problem rather than through a coefficient in the

lowest-order or dominant-balance equation. This ultimately means that the oblique-mode

amplitude is completely determined by a single amplitude-evolution equation. It turns out

that this equation is the same as the one that was obtained by Goldstein & Choi (1989), who

considered the related problem of the interaction of two oblique modes in a two-dimensional



shear layer.

Since this type of interaction has already been shown to play a role in both the subhar-

monic transition process (Goldstein & Lee 1992; Mankbadi, Wu & Lee 1993; and Wundrow,

Hultgren & Goldstein 1994) as well as in one of the major competing scenarios for the har-

monic transition process (Goldstein & Lee 1992), this adds to the growing evidence that it

is a relatively universal mechanism that can occur in many of the transition processes iden-

tified in the literature. It is our belief that this identification of universal mechanisms is one

of the important ways in which the fundamental theory can contribute to our understanding

of the very complex and multifaceted transition process.

The paper is organized as follows. The spanwise-periodic mean-flow distortion is an-

alyzed in §3. The linear stability of this flow is considered in §§4 and 5 where it is shown

that even relatively small distortions can cause the oblique instability modes to grow more

rapidly than the fastest growing plane wave when the Reynolds number is sufficiently large.

The nonlinear effects are considered in §6 where it is shown that the nonlinearity is weak

and the common amplitude of the oblique modes is governed by the amplitude evolution-

equation derived in Goldstein gz Choi (1989), but with different numeric coefficients. The

implications of the results are discussed in §7.

2. Formulation

To fix ideas, we consider the incompressible flow over an infinitely thin flat plate and

suppose that a small-amplitude spanwise-periodic motion is suddenly imposed on the flow

(say by a vibrating ribbon or other excitation device) at a distance L downstream from the

leading edge. The Cartesian coordinates system (x, y, z) is attached to the plate at L with
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x alignedwith the free stream, y normal to the plate, and z in the spanwlse direction. All

lengths are non-dimensionalized by 5 where

- L/R½ (2.1)

is characteristic of the mean boundary-layer thickness at L and

tt - LUoo/u (2.2)

is the global Reynolds number based on the free-stream velocity Uoo and the kinematic

viscosity u. The time t, velocity _ -- (u, v, w), and pressure variation p from %he free-

stream value Poo are non-dimensionalized by 6/Uoo, Uoo and pU_, respectively, where p is

the density. With this non-dimensionalization, the Navier-Stokes equations become

(OlOt + u.V),, + Vp = V_ulR½, (2.3)

v.u = o, (2.4)

where _ -= iO/Ox -F jO/Oy -t- kO/Oz is the gradient operator.

When the excitation device is placed perpendicular to the free-stream direction, as

we shall now assume, it will generate a disturbance that consists of a weak mean-flow

distortion plus a pair of equal-amplitude oblique instability modes that form a standing

wave in the spanwise direction. Since we ultimately require that the spanwise length scale

of the disturbance, say 1/;3, be much larger than the local boundary-layer thickness, we

introduce the scale factor a through

o<a <l, (2.5)

and eventually require that a _( 1. The distinguished scaling for the imposed cross-flow

velocity at x = O, say dR-½Wo(y, az) where _ - 1/lna, then corresponds to Wo = 0(1).



3. Mean-flow distortion

The imposed cross flow OR-½Wo(y, az) generates a mean-flow distortion that ulti-

mately decays out through the action of viscosity, but causes the mean flow to become

inflectional before this occurs. This allows certain initially hnear instabilities to grow to

nonlinear amplitudes by essentially inviscid mechanisms. It turns out that the most inflec-

tional profiles lie in the region where

z_ = z/a3R½ = 0(1) (3.1)

for 0 < a _< 1. This scale will be very long compared to the triple-deck length scale when

a _> 1/R_ (3.2)

which is now assumed to be the case. When a = 0(1), the mean-flow velocity U = (U, V, W)

and pressure P expand like

v = (fY,R-½9,R-½¢¢) +...,

P = R-lP+.-.,

(3.3)

(3.4)

and are determined by the parabolized Navier-Stokes equations

((YOlO_2+ O.vT)O + vTP = v_O, (3.5)

Ofy/Ox:+ vT.O = o, (3.6)

where O - (/), _', l_) and VT =--jO/Oy+kO/Oz is the gradient in the transverse plane; but,

when a << 1, the mean flow will be interactive relative to the cross-flow direction and will be

determined by the three-dimensional boundary-layer equations in the main part of the flow



field. The initial distortion becomes fully interactive in a sufficiently small neighborhood

of x = 0, but this region is of little interest here since (with the present scaling) it has

negligible effect on the instability waves. Its structure is discussed in appendix B for the

long-wavelength limit a << 1 in order to show how the x2-scale flow (to be discussed below)

evolves from the initial disturbance. Since (3.5) and (3.6) must be solved numerically,

the relevant physical mechanisms can best be understood by concentrating on the long-

wavelength limit a << 1 for which analytic solutions can be obtained. The discussion of the

order-one-wavelength case is deferred to the end of §7. The structure of the long-wavelength

solution is similar to the short-wavelength triple-deck solutions worked out by Rozhko &

Ruban (1987) and by Choudhari, Hall &: Streett (1992), but some new results are obtained.

3.1. The main boundary layer

In the main region where x2 and y are both order one, the spanwise-variable mean flow is an

inviscid perturbation about the local Blasius profile (fiB, R-½VB). The mean-flow velocity

and pressure in this region expand like

U = U. + a4U_ + O(aS),

v = R-½[VB+ oV,, + 0(-,2)],

W = _R-½[WD + O(alna)],

P = o-_R-'[P_ + o(o)],

(3.7)

(3.8)

(3.9)

(3.10)

where

a3'x """ " VB(y) ½ [Yf'(Y)- f(Y)]U,(x2, y) = f'(y) - _ 2YJ [Y), = (3.11)
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f denotes the Blasius function which satisfies

f'"+ ½ff" = O, f(O) = f'(O) = O, f'((:x_) = 1, (3.12)

Uo, Vo, and WD are functions of x2, y and

5 = az, (3.13)

PD is a function of x2 and 5 only, and a prime denotes differentiation with respect to the

argument. Substituting (3.7)-(3.10) into (2.3) and (2.4) and using the fact that

WD "-* Wo(y, _) as x2 _ 0 (3.14)

leads to

Up = f" (`4 + ex2He) ,

VD = --Y' (`4_2 + _rH_.) ,

WD = Wo,

(3.15)

(3.16)

(3.17)

where

L [W0(s, 5) W0(0, _) ds + In y,
H(_,_) = t Y-77) _o, _0

,ko _ 0.33206 is the Blasius wall-shear stress and an independent variable used as a subscript

denotes differentiation with respect to that variable. The particle displacement ,4 and

pressure distribution PD are, at this point, arbitrary functions of x_ and 5, which have the

implicit a dependence

,4 ---- ,40(X2, _.) q- _r,41(X2, Z), PD = PO(X2, _') + #PI(x_, _), (3.19)



wherethe 0(1) terms have been inserted to facilitate matching with the solution in the

viscous wall layer to be discussed below. We do, however, require that

A, A_--*0 as x2-*0 (3.20)

so the velocity distortions UD and VD arise from only the imposed cross flow W0. A a

dependence similar to that in PD will be implicitly assumed in the corresponding dependent

variables in the wall layer as well as in the inviscid outer layer which is considered next.

3.2. The outer layer

Since the solution (3.16) does not vanish as y --* oo, it is necessary to introduce an outer

region where

= ay = O(1) (3.21)

in order to satisfy the appropriate free-stream boundary conditions. The solution in this

region relates P, and _4.

Substituting (3.1), (3.13) and (3.21)into (2.3) and (2.4) and matching with the main-

boundary-layer flow shows that the solution in the outer layer expands like

U = 1 + a-3R -10 + ..., (3.22)

Y = R-½VB(oo) + aR-½CV +..., (3.23)

W = aR-½ITV +..., (3.24)

p = a-3R-1/5 + ..., (3.25)

where it has been assumed that Wo = o(y -1) as y --* oo. The functions /), V, l?d and

15 of x2, _ and 5 are determined by the linearized Euler equations. It follows from these
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equationsthat

/5 4-/5 = 0 (3.26)

while the free-stream boundary conditions and matching with the main-boundary-layer

solution require that

/5_0 as ._oo, (3.27)

and

/5=pD, /5 =_A_x2 at _=0. (3.28)

The solution to (3.26)-(3.28) is most easily found by expressing /5 as the real part of an

analytic function of the complex variable _"4- i_. The Cauchy integral formula can then be

used to relate PD and .4. For the spanwise-periodic mean flows that are of interest here,

this leads to

PD 5 _ r_/#

where 3c denotes the Cauchy principal value.

(3.29)

3.3. The viscous wall layer

It will now be assumed that

B(z) = W0(0,e) # 0. (3.30)

(The case where W0(0, _) = 0 is much more complex and is best studied by considering

the order-one-wavelength problem discussed at the end of §7.) It then follows from (3.15),

(3.18) and (3.30) that

- ' (3.31)UD _AoA+ax2B lny as y_0
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andconsequently that U will not satisfy the proper wall boundary condition. It is therefore

necessary to introduce a viscous wall layer where

Y = y/a = O(1) (3.32)

in order to bring U to zero at the wall. The mean velocity in this region expands like

U = a,_oY + 34(_ " - £)_2oy4 - ½A0x2Y) +" ",

1 2
Y = a2R-½(_ / + _oY ) + "",

w = R-½W+...,

(3.33)

(3.34)

(3.35)

where U, V and W are functions of x2, Y and 2.

Substituting (3.33)-(3.35) and (3.10) into (2.3) and (2.4) yields

_oY&, + _0_ = 0vy, (3.36)

(3.37)

(3.38)

It follows from (3.30) and (3.31) that the solution to these equations must satisfy the

boundary conditions

U=I)'=I)¢'=0 at Y=0, (3.39)

and

(J "--*)_oA + 6"x2B' ln(aY), ITv"_ OB as Y _ _. (3.40)

The solution must also satisfy the upstream condition

/]-*0, 17V_B as x2oO, (3.41)
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sincethe thicknessof the viscouswall layergoesto zeroas x2 _ 0.

Eliminating 1) between (3.36) and (3.38)leads to

,XoY - .% = fJvvv , (3.42)

which determines///once l/d is known. This equation must be solved subject to

_]yy = 0 at Y = 0 (3.43)

in addition to (3.39)-(3.41). Since the boundary-value problem (3.37) and (3.39)-(3.43)

has a similarity solution when PD is set equal to zero and ,4 is selected appropriately, it is

convenient to seek a solution of the form

(] = _x2B'(5)F(_) + (](°(x2, Y, z; a), ITV= #B(2)G(_) + 17V(°(x2, Y, z; a) (3.44)

where

r/= (X0/x2)_tY, (3.45)

and F and G are determined by

Fill .91_ 1 _2 L-,tl 1 _2,,'_15'1 _ --_7/F I=-G, Gll+Sq _ =0 (3.46)

with

F=F"=G=0 at 77=0, (3.47)

and

F_lnr/, G_I as T/---,c¢. (3.48)

It follows that

G F( l_-]-/1 r _= _s 7kg, ),
(3.49)
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where 7" - r/3/9, r is the usual gamma function and 7 is the incomplete gamma function

defined on page 260 of Abramowitz & Stegun (1964). It can also be shown that

F-t 1 2_l Jot [ 21]2 t)dt_3rtl_-I r_e-r +(r+_)7(_,r) (3.50)= '5' _',_J '

where M denotes the confluent hypergeometric function in the notation of Abramowitz &

Stegun (1964, p. 504).

The inhomogeneous solutions/d(_) and I_ (O can be found by taking Laplace transforms

with respect to x2. The details are given in appendix A where it is shown that

xPo_ -F( ! _tgO) Jox2= 3J'_. - A¢_(_,5"; a)(xz - _)-]d_, (3.51)

and

:_]o

where X - F(½)2/(9A5) _,

Q(m)(x2'5";a)= ),0F(_) -C,+½[_(2)- (_-)] , (3.53)

F (_) is given by (A 17), C1 is given by (A 7) and ¢ denotes the digamma function defined

on page 258 of Abramowitz & Stegun (1964).

The pressure distribution Po and the particle displacement .A can now be found from

the coupled equations (3.29) and (3.51). These equations, together with (3.15), (3.16) and

(3.20), imply that

Up _ _x2f"H_ and Vo _ -_f'H_ as x2 _ 0, (3.54)

while

x2 -* 0 (3.55)
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whichshowsthat the expansions(3.7)-(3.10)becomeinvalid(asalreadyanticipated) when

z2 becomes sufficiently small, i.e. when

_c = ax = O(1). (3.56)

The relevant solution is constructed in appendix B where it is shown that the pressure

fluctuation that matches onto (3.55) as _ _ oo remains bounded at _ = 0.

Equations (3.20), (3.29) and (3.51) also imply that

A,,_ _0 In _0 -C1 as x2 --* oo,

which, when combined with (3.15) and (3.45), shows that the viscous wall-layer thickness

increases like x_ as x2 --* oo and that it fills the entire Blasius boundary layer when

x/R½ = a3x2 = O(1). However, (3.7) implies that the streamwise velocity component of

the vortex flow will still be small compared to the Blasius profile in this region. This, in

turn, shows that the vortices undergo their entire life cycle from initial algebraic growth to

ultimate viscous decay while still remaining small compared to the basic Blasius flow.

4. Structure of the instability waves

We now consider the oblique instability modes that are generated by the excitation

device and which initially grow in accordance with linear dynamics. If it were not for the

streamwise vortices, only the slowly growing Tollmien-Schlichting waves would be amplified

by the mean flow but, as noted by Prandtl (1935) and Stuart (1965), the rapidly growing

streamwise velocity perturbation can cause the mean flow to become inflectional and thereby

support inviscid Rayleigh instabilities that exhibit much larger growth rates (when a is

sufficiently large relative to R-X). The inflection point will always lie close to the wall
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sincethe vortex velocityis alwayssmall comparedto UB (the actual distance turns out

to be O(a)). The maximum inviscid growth of the instability waves will take place in the

streamwise region where z2 = O(1) since it follows from (3.44), (3.50), (3.52) and (3.57)

that

__]yy ""+ 0 as X2 --+ ¢X_ at Y = constant. (4.1)

The expansions (3.7)-(3.9) and (3.33)-(3.35) and the inequality (3.2) show that the

cross-flow velocity components of the vortex remain small compared to its streamwise com-

ponent in this region. This means that the initially linear instability modes, whose wave-

lengths are small on the x2 scale, are only affected by this latter velocity component and

therefore behave (to lowest order of approximation) like linear perturbations of the uni-

directional transversely sheared mean flow U(x2, y, 5; a), with the slow streamwise variable

x2 entering only parametrically, i.e. playing the role of a constant. It therefore follows from

inviscid instability theory that the wavelength of the most rapidly growing waves will be

O(_fa -1) which is long compared to the boundary-layer thickness but small compared to

the downstream distance from the excitation device, say x = a3R½l where l is order one.

The initially linear non-interacting instability waves will eventually become nonlinear

when their amplitudes become sufficiently large. However, the resulting nonlinear effects

will be confined to the critical layer since the linear growth rates are small compared to the

corresponding wavenumbers and the Reynolds number is large.

The flow outside this layer will still be determined by linear dynamics. Its velocity and

pressure will expand like

u = U +,(_,a_3,_b) +..., (4.2)

16



p=P+e/_+'",

where _i, _, tb, and i6 are functions of

(4.3)

_c= ax - a4 R½ l, (4.4)

y, 5 and

i - at, (4.5)

and e << 1 characterizes the local amplitude of the unsteady disturbance in the streamwise

region where nonlinear effects first become important. The precise relationship between e

and a will be specified below when the flow in the critical layer is considered.

Substituting (4.2) and (4.3)into (2.3) and (2.4) and linearizing the result about the

mean flow U yields

D(_, _3,u3) + (gufi + U_u3,0, 0) + (i6e, a-2i6u,ib_) = O(a-'R-½), (4.6)

(4.7)_ie + _3u + zb_ = 0,

where D = 0/0[ + UOlO_2 is the leading-order convective derivative relative to the mean

flow. These equations are just the familiar equations for the linear perturbations about a

uni-directional transversely sheared mean flow (Goldstein 1976; Henningson 1987). It is

well known that the velocity fluctuations can be eliminated between them (see Goldstein

1976, pp. 6-10 for a detailed derivation) to obtain the following equation for the pressure

fluctuation

D(a-2_uu + V_i6) - a-22Uu_eu - 2Ue_ee = O(a-'R-½ ), (4.8)

where V2H = 02/0_ 2 + 02/0 _'2 is the Laplacian in the horizontal plane.
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Sincea << 1, our interest is in the long-wavelength instability wave solutions to (4.8).

We subsequently show that, as in the case of a strictly two-dimensional mean flow, the rele-

vant x-scale growth rates are O(a4), which means that the solutions grow on the relatively

_1 ----0"4( x -- 0"3R½_) :--a3_"

long scale

(4.9)

As a minimum, we want a to be large enough so that these growth rates are at least as

large as the relatively small, i.e. O(R-_), viscous growth rates corresponding to the upper-

branch scaling for the Tollmien-Schlichting waves (Bodonyi & Smith 1981; Goldstein &

Durbin 1986). This means that we should require

R-_ = O(a) (4.10)

which is consistent with the inequality (3.2) and includes the case R-_ = o(a) in which the

growth rates are larger than the corresponding upper-branch growth rates of the Tollmien-

Schlichting waves. In any event, the O(a-lR-½) error terms will then be small compared

to the wave-growth terms in (4.6)-(4.8) and these equations will then be accurate enough

to determine the instability wave solutions outside the critical layer - provided we allow for

a thin Stokes layer in the near wall region where y = O(a-lR-¼).

As already indicated, the initial upstream disturbance is best represented by a pair

of equal-amplitude oblique instability modes having the same streamwise wavenumber and

scaled frequency but opposite spanwise wavenumbers. These modes form a standing wave

in the spanwise direction that exhibits its most rapid growth when its spanwise wavelength

is twice that of the mean-flow distortion, i.e. when its spanwise wavelength is 2 _//_.

The resulting solution for the unsteady portion of the flow will then be of the form
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originallyassumedby Henningson(1987),namely

(_i,_,v),_b) = Re [A?(_,_, _,ib)e ix + Bt(_, 0, 0, 0)] (4.11)

where AI(Xl) is a slowly varying amplitude function that accounts for the growth of the

instability waves, Re [B?(xl)_(y, _)] is a spanwise-variable mean-flow distortion that is gen-

erated by nonlinear effects in the critical layer,

x - (4.12)

and the real quantities 6(a) and C'(a) are the scaled streamwise wavenumber and phase

speed correct up to but not including O(a 3) terms. 6 and g"possess expansions of the form

6=6o+..., _=e0+"" (4.13)

as a ---+0 where 60 and C'0are order-one constants.

number or (non-dimensional) angular frequency is

The corresponding scaled Strouhal

(4.14)

where S is an order-one real constant. Substituting (4.11) into (4.8) shows that, outside the

Stokes layer, the function ifiof xl, y and 5 is determined to the required order of accuracy

by

PY [ a2p_ ] a2a2[_ =0 (4.15)+ (u-
Y

where

a- _ - a3iAV/A t and c = aS/a, (4.16)

which insures that the instability wave exhibits only spatial growth. It follows from (4.6),

(4.7) and (4.11) that the velocity fluctuations are determined in terms of i5 by

fi = Uv_Sy U_iS_ 15 (4.17)
a2a2(U - c)2 a2(U - c)2 U - c'
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The solution to (4.15) that satisfies the homogeneous boundary condition

(4.1s)

(4.19)

/_--+0 as y_oo (4.20)

and matches onto the Stokes-layer solution as y -+ 0 is derived in the following section.

5. Solution outside the critical layer

5.1. The Stokes layer

Viscous effects, if they enter the reckoning, can only affect the solution within the critical

layer and within a thin Stokes layer induced by the no-slip boundary condition at the wall.

The appropriate scaled transverse variable for the latter region is

]: = aR¼y. (5.1)

Substituting (4.2), (4.11) and (5.1) into (2.3) and (2.4) shows that the unsteady flow is

determined to the required order of approximation in this region by

- ioS(_, aRt _, _) + (i_, R½_, p_) = a(_, art _, _)Fr, (5.2)

i(_fi + aR¼i:? + _b_ = O, (5.3)

together with the no-slip boundary condition

_t=_=dJ=0 at 1_=0. (5.4)

The velocity fluctuations can be eliminated between (5.2) and (5.3) to arrive at an equation

for the pressure fluctuation. The equation for the transverse velocity fluctuation _5can then
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beobtainedby combiningtheY derivative of this equation with the transverse component

of (5.2). The solution that satisfies (5.4) and does not exhibit exponential growth as Y --, oo

is

_--a-lR-{a& -3 (oOY +e -_?- 1) (5.5)

where ff_= e-i_S ½ and a is an arbitrary function of xl and 5. It follows from (5.5) and the

transverse component of (5.2) that

(5.6)

which now can be used to derive the appropriate boundary condition for (4.15) as y --* 0.

5.2. The inviscid wall layer

Introducing the wall-layer variable (3.32) into (4.15) and (5.6) and integrating the former

with respect to Y subject to matching with the latter as Y ---, 0 shows that

= + o(o 5) (5.7)

for Y = O(1) where b is an arbitrary function of xl and 5 that has an expansion in a

containing terms up to but not including O(a4). It turns out that

b = bo + "'" + iaab3i + "'" (5.8)

as a ---*0 where b0 depends on 5 only and the coefficients b0 to b3i are purely real so that

b0 and aab3i are the leading-order approximations to the real and imaginary parts of b.

To determine the dispersion relation, the small-a expansion of 15r is needed. By using

(5.7) together with the expansions (3.33) and (4.16), (4.15) can be integrated with respect
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to Y to obtain, after some manipulation,

PY

a6 [ _,y2 iA ?'

+-_z,_ [_ + #(¢+ - ¢-) - c_r_(Y - Y_)_ A, + aSRic_.2Coj +... (5.9)

where _D = b,O/O_, + b_, - a2b, the transverse position of the critical level ye = aYe is

determined by the condition

u(t, ye,_;o) = oe, (5.10)

the + superscript indicates different values for Y _ Yc, _ is the real function of Y and _,

determined by

½(Y -Ye)3C, y = (:(t,Y,_;a) - ::(t, Ye,_;a)- _Ag(y4 _ y:)_ ½:_ot(Y- Yc), (5.11)

with _=Oat Y=O, and

p = _]Vy(_., Yc, 2; a) - 1_2v2 (5.12)"o*c

isthe normal derivativeof the scaledmean vorticityat the criticallevel.Matching (5.9)

with the Stokes-layer solution (5.6) as Y -+ 0 shows that

a = -b_ + a2b (5.13)

where the small-a expansion

Y_ = _/_0 + O(a3), (5.14)

which is easily obtained from (3.7), (3.11) and (5.10), has been used.

It follows from (4.17) and (5.7) that the discontinuity in (5.9) results in a jump in the

streamwise component of the velocity fluctuation

:,_= -:_ [_(_,+- :) l_g_2]+... (5.15)
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across the critical layer. Matching this jump with the one induced by the flow in the critical

layer determines the integration 'constants' ¢+ (which are at most functions of xl and 5).

The velocity jump corresponds to a logarithmic phase shift of rr when the critical layer is

linear, which leads to the requirement that

¢+ - ¢- ---* irr as Xl _ -_. (5.16)

This ensures that the nonlinear solution (to be discussed below) will match onto the appro-

priate linear solution in the upstream region.

5.3. The main boundary layer

Equations (5.7) and (5.8) together with the expression for iSy obtained by substituting

Y = y/a into (5.9) and re-expanding the result suggest that, in the main part of the

boundary layer, 15should expand like

15= a(b0 + a/_2 +'") + ia 4 (b3i + a[95i +" ") (5.17)

where 152 and 15si are real functions of xl, y and _"and only the first two terms in the small-a

expansions of the real and imaginary parts of i5 are shown. Substituting (3.11) into (3.7),

inserting the result together with (5.17) into (4.15), and integrating with respect to y yields

_2 u = d2f' 2, [gsiu = dsi/'2, (5.18)

where d2 and dsi are at most functions of xl and 5. Matching with the real and imaginary

parts of the wall-layer solution (5.9) then shows that

(_-_c0) (5.19)d 2 = 1) 0
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where

and

dsi = V3i X-_ + Im V0 (¢+ -¢-) A0--_ + as/i'_e_9 '

:Do = bo_c9/c95 + bo_ - t_20bo,

D31 = b3i_0/05 + b31_ - 5_b3i + 2_oIm(iAt' /At)bo,

are the scaled leading-order approximations to the real and imaginary parts of D.

(5.20)

(5.21)

(5.22)

5.4. The outer layer

Equation (5.18) shows that the solution (5.17) does not satisfy the free-stream boundary

condition (4.20) and it is, therefore, necessary to construct the solution for p in the outer

region described by (3.21). Substituting (3.21) into (5.17) and making use of (3.12) and

(5.18) shows that, in this region, _5expands like

i5 : aiS1 + "'" -t- i0"4p4i 4- "'" (5.23)

where i_I and io4i are real functions of Xl, ,_ and _, and only the leading-order terms in the

small-a expansions of the real and imaginary parts of/_ are shown. /51 and/54i must satisfy

pl = b0, Pl_ = d2, P4i ---- b3i, P4i_ = dsi at _) = 0 (5.24)

in order to match with the main-boundary-layer solution (5.17) and (5.18) and

Pl, P4i -* 0 as y --, o¢ (5.25)

in order to satisfy the free-stream boundary condition (4.20). Equation (3.22) shows that

the mean streamwise velocity U approaches unity at a fast enough rate to ensure that (4.15)
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reducesto the Helmholtzequationwhen_9= O(1). Therefore, substituting (4.16) and (5.23)

into (4.15) leads to

/51_ +/51_ - O02/51= 0,

/54i_ "_-/54i_ -- Ot_/54i"-- -2VtoIm( iA t' / A t )/51"

(5.26)

(5.27)

Up to this point, no restrictions have been placed on the 5 dependence of the solution.

However, as indicated above, our interest is in the case where the upstream linear solution

has a standing wave behavior in the spanwise direction with a spanwise wavelength twice

that of the imposed cross-flow velocity W0. This means that b should be of the form

b = 2_ cos3Z + 0(° 3) (5.2s)

where the normalization 2(_ has been inserted for convenience.

It now follows from (5.19) and (5.24)-(5.26) that the relevant solution to (5.26) is

/_1 = 2t_0e-_ cos/3_" (5.29)

where

-- + = (5.3o)

The boundary-value problem (5.24), (5.25) and (5.27) only possesses solutions for certain

values of Im(iAt'/A t) since /51 is a homogeneous solution to (5.27). These values can be

found without explicitly solving for/54i by integrating the difference between/51 times (5.27)

and/54i times (5.26) from 9 = 0 to oo, integrating the result from _, = 0 to 2_//3 and then

using (5.24), (5.25) and the 5-periodicity of 15and U to arrive at the following solvability

condition

(5.31)
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It nowfollowsfrom (5.19)-(5.22),(5.29)and(5.30)that

(coSO+ c-_so)(At' - i_qAt)=

-,-- --/2(¢+-¢-)(1 20cos2_5)d5A t A t (5.32)
2rcJo _o +cos + ahRi(2B) ½

where 0 --- arctan(/3/_0) is the obliqueness angle of the instability wave and the real constant

_i has been introduced to account for the 0(0 "3) term in the expansion of the streamwise

wavenumber in the upstream linear region, ni is completely determined by the linear prob-

lem outside the critical layer but its explicit form is not given here because it is not needed

for the subsequent analysis.

Equations (3.44), (3.45), (5.12) (5.14), (5.16) and (5.32) imply that

A t _ Atoe_=l as xl _ -_ (5.33)

where Ato is a constant, t¢ = n, + itq,

cosO [_x_ _ rr_g Ag (5.34)
cos20+1 L_0 cos20- _ + _n_(2_)½

is the common initial parametric growth rate of the oblique modes and

.__--_/o _"/_oy_.(_,r_,_.;o.)cos(2,_.)d_. (_.35)

with/) given by (3.44), (3.50) and (3.52). The last term in (5.34) accounts for the viscous-

Stokes-layer effect and is negligible when a >> R-_. The first term in (5.34) represents

the growth produced by the resonant interaction with the streamwise vortices. It is always

possible to make n_ positive by appropriately selecting the imposed cross-flow velocity Wo

which is now assumed to be the case.
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6. Nonlinear-critical-layer effects

Since (5.33) and (5.34) imply that the linear instability wave continues to grow as it

propagates downstream, nonlinear effects eventually come into play and, as already noted,

this first occurs locally within the so-called critical layer. The thickness of the critical layer

(on the y scale) turns out to be of the same order as the growth rate so the appropriate

scaled transverse coordinate for this region is

= (y - ae/, 0)/a 4 = (Y -  /A0)/a 3. (6.1)

Nonlinear terms produce a critical-layer velocity jump at the same order as the linear/

parametric-growth terms when the amplitude scale e, which was defined in (4.2), is chosen

to be

e = a 1°. (6.2)

Viscous effects will enter into the dominant balance for the critical layer while making only

insignificant modifications to the external flow when the Benney-Bergeron parameter

= 1/a13R½ (6.3)

(Benney & Bergeron 1969) is order one. The implied wavelength-Reynolds-number scaling

(6.3) is more restrictive than (4.10) in the sense that the Stokes-layer contribution to (5.34)

is negligible when ,k = O(1). However, retaining this term in (5.34) while assuming A = O(1)

in the critical-layer analysis leads to a kind of distinguished scaling from which the more

viscous case (4.10) can be recovered as a limit (see below) and we therefore adopt (6.3) as

the appropriate wavelength-Reynolds-number scaling for the present problem.

27



Equations(5.10)and (6.1)imply that

y _ y_ = a3(O_ _) +... (6.4)

where

#c(5; a) = -Ao 1/)(*, Yc, 5; a) + _A0Y_l4 + ½,y¢ (6.5)

accounts for spanwise variations in the position of the critical level. Introducing (6.4) into

the expressions for _,/_, _b and/_ obtained from (4.17)-(4.19), (5.7) and (5.9), re-expanding

the result, and using (3.33)-(3.35), (4.2), (4.3), (4.11), (6.2) and (6.3) shows that the critical-

layer flow should expand like

u = aC"+ a4A0(# - #c) + arUl + al°u2 + a13u3 +'",

v = trl2v 1 + o'lSv2 + a18V3 + • • ",

W = a7Wl + O'10W2 + O'13W3 + ' • •,

p = a-3R-1pD + al126_cos/95Re(Ate iX) + a14p2 + alT'p3 + ...,

(6.6)

(6.7)

(6.8)

(6.9)

where the un, v,_, wn, and pn are functions of X, xl, # and _"that have expansions in a

containing terms up to but not including O(a3). Matching (6.6)-(6.9) with the external

linear solution requires that

+2/92 cos/gZRe(A%iX)/Aoa(# - #_), (6.10)

and

wl --* -2/_ sin _5,Re(iAteiX)/Ao(O - #_), (6.11)
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as f/ ---*4-oo. Matchingthe critical layerinducedvelocityjump with the externaljump

(5.15)requires

l f;f Llne-iXu3"dXd#=-D°[fi(¢+-¢-)/)t_(i_]Af'n
(6.12)

Multiplying (6.12) by cos iS, integrating from %"= 0 to 2n/j and then combining the result

with (5.32) yields the jump condition

J /2'_/]3//f L2_e-iXu3ocosj2.dXd#dS=27n2 Jo

<o 0+ (6.13)

Notice that, for the reasons given above, the asymptotically small Stokes-layer term has

been retained in this result.

Substituting the expansions (6.6)-(6.9) into (2.3) and (2.4) and combining the result

with (6.10), (6.11) and (6.13) leads to a boundary-value problem for the u,, v,, w,, and

p,. When this is expressed in terms of the strained coordinate

fl = fl - #c, (6.14)

and the corresponding velocity component

9,=v,-fk_w,, for n= 1,2,3, (6.15)

we find that

vl = -2( 52 + _2) cos/75Re(iAte ix)/A0, (6.16)

and, more generally, that the entire problem is just the viscous version of the one solved in

Goldstein & Choi (1989), a special case of the one considered in Goldstein & Lee (1992), and,

except for differences in notation, precisely the one considered in Wu, Lee & Cowley (1993).
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The spanwise variation of the mean flow (which is the new feature in the present analysis)

now enters the problem only through the transverse boundary condition (6.10) as well as the

transverse boundary conditions for u2, u3, v2 v3 and w3. But, since the spanwise variation

of the mean flow introduced by these conditions only affects the linear/parametric-growth

terms, the solution to the present critical-layer problem can be easily deduced from the

solutions given in the previous investigations. Substituting this solution into the velocity-

jump condition (6.13) leads to the following equation for A t

At' = _At + iM /_l /_
0 lO0 ,J--00

where

K(Xl 1_I,_2)AI((I)AI(_2)At*(E,1 + _2 - xl)d_ld_2 (6.17)

M - 2_rA_6_ cos2 0/(cos2 0 + 1), (6.18)

the asterisk denotes complex conjugation and the initial parametric growth rate _r is given

by (5.34). The kernel function K is fairly complicated in the general viscous (i.e. order-one

A) case considered by Wu, Lee & Cowley (1993) and Leib & Lee (1994), but, in the inviscid

limit first considered by Goldstein & Choi (1989), it is a relatively simple polynomial of the

streamwise coordinate and is given by

g = ½ tan 20cos20(xl - _1) [cos20(Xl - _1)(_1 - _2)- (Xl - _1) 2 - (Xl - _2)2] • (6.19)

As already indicated the Stokes-layer contribution to _r is negligible when A = 0(1). How-

ever, retaining this contribution and taking the limit as A/_ 3 _ oo of the integral term in

(6.17) as was done by Wu, Lee & Cowley (1993), leads to the amplitude-evolution equation

corresponding to the upper-branch Blasius-boundary-layer scaling aRM = O(1). In the
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presentnotation,thisequationis

= _ 1 A t _1
A t' RA t i_-]Mtan28sin20cos20(_a)_r(g) /_oolAt(£)12d_ t,

2-2 -3 rescaled Benney-Bergeron parameter.where _ =- ,_oCto,_/Co is a

(6.20)

7. Results and discussion

In one sense, the oblique-mode amplitude equation (6.17) (or its highly viscous limit

(6.20)) can be thought of as the final result of this paper. While this equation is now well

known, its application to the present situation is new as is the formula (5.34) for the initial

parametric growth rate of the oblique modes _¢_. The latter accounts for the parametric-

resonance effects that allow the oblique modes to grow faster than the two-dimensional

waves which, in turn, allows the oblique-mode interaction described by (6.17) to become

the dominant interaction in the initial nonlinear stage of the transition process. The initial

parametric-resonant interaction takes place between the relatively weak spanwise-periodic

mean-flow distortion (i.e. the streamwise vortices) and a pair of equal-amplitude oblique

modes that form a standing wave in the spanwise direction with spanwise wavelength equal

to twice that of the mean-flow distortion. Equation (5.34) shows that its spatial growth

rate is enhanced by the inflectional nature of the mean velocity profile.

The transverse position of the mean-flow inflection point Ys = aYs is determined by

_]yy 1 _,2v2-_,,o J =0 at Y=Ys. (7.1)

Figure 1 shows how Y, varies with x2 for an initial spanwise velocity that behaves like

B(5) - W0(0, 2) = (2_)-'B0 sin 2_5 (7.2)
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(iii) _

(ii)

oo 3 ; 3 ;_
X2

Figure 1: Transverse position of mean-flow inflection point on the 5 = 0 plane vs. down-
stream distance for a -- 0.05. (i) Bo = -12_, fl = _r/24; (ii) B0 -- -9_r, _ = _/24; (iii)

Bo = -16_, fl = 7,/18.
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at the wall. For this classof imposedcrossflows,(3.20),(3.29)and (3.51)canbe solved

analyticallyto obtain

° f0 2A= _-'_ (-:_) _2-1 Q(m)(_, _-;a) e-)_(:_2-_:)d_, (7.3)
m_4

and

where _ -

PDe_ = 2/_-A_2_2, (7.4)

The O(1/lna) terms in (3.44) and (3.53) were kept when

computing the results presented here since lhese terms can be significant even at relatively

small values of a. The mean-flow distortion U initially grows linearly with increasing x2 (see

(3.7), (3.15), (3.33), (3.44), (3.52) and (3.55)) causing Ys to move out from the wall. This

type of linear disturbance growth is similar to the algebraic growth proposed by Ellingsen

_5 Palm (1975), Hultgren & Gustavsson (1981) and Landahl (1990) as an alternative or

'bypass' transition mechanism. However, only the mean-flow distortion (or vortex flow)

undergoes this type of growth in the present study and the follow-on 'secondary' instability

modes exhibit the more conventional exponential-type growth. In the present analysis, the

initial mean-flow growth is eventually reversed by viscous effects once the viscous wall layer

expands to fill the entire Blasius boundary layer, i.e. once x2 becomes O(a-3). However,

figures 1 and 2 show that the mean-flow inflection point produced by the distortion actually

vanishes before this stage is reached.

The corresponding initial parametric growth rate t;r is shown in figure 3. Near the exci-

tation device, i.e. at small values oft, the mean-flow inflection point lies very close to the wall

and, as shown by the figure, tcr is negative when aR_ = O(1) and given by the ToUmien-

Schlichting-wave result when aR_ = O(1). The actual unsteady flow in this region would
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Figure 2: Scaled streamwise velocity profiles of the vortex flow within the viscous wall layer
for a = 0.05, g = n/24 and various values of x2.
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Figure 3: Initial parametric growth rate vs. scaled Strouhal number for a = 0.05 and

various values of £. (a) Bo = -12n,/_ = n/24, A = 0; (b) Bo = -9_,/_ = _/24, A = 0; (c)

Bo = -16n,/_ = n/18, )_ = 0; (d) Bo = -12n,/_ = n/24, _ = 1/a 3.
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Figure 3: Initial parametric growth rate vs. scaled Strouhal number for a = 0.05 and

various values of£. (a) Bo = -12_x, f] = n/24, A = 0; (b) Bo = -9rt,/_ = 7x/24, )_ = 0; (c)

Bo = -16n,/_ = n/18, ,_ = 0; (d) Bo = -12n,/_ = n/24, _ = 1/a 3.
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probablybedominatedbytwo-dimensionalviscousinstabilities,i.e. byTollmien-Schlichting

waves,with thethree-dimensionalinviscidinstabilitiesemergingfurther downstreamwhere

the mean-flowdistortion hasbecomesufficientlylarge. The continuedgrowthof this dis-

tortion can then lead to muchlargergrowth ratesfor the three-dimensionalinstabilities

than thoseof the Tollmien-Schlichtingwaves.This isconsistentwith theexperimentalob-

servations,whichprobablycorrespondto the casewhereaR_ = O(1), and show that the

three-dimensional structures (which can be identified with the oblique modes described by

the present analysis) gradually emerge from the initial two-dimensional motion. Figures 3

and 4 suggest that these structures will eventually decay once the mean-flow inflection point

has been eliminated by viscous effects. However, the oblique modes will most likely become

nonlinear before this occurs and their amplitudes will then determined by (6.17).

Since the nonlinear critical-layer equations (when expressed in terms of #) explicitly

involve the spanwise variation of the critical-level position, it would have been impossible to

anticipate that the nonlinear oblique-mode amplitude would be determined by (6.17) which

had previously been derived only for nonlinear interactions on strictly two-dimensional mean

flows. However, the transformation (6.14) and (6.15) eliminates this spanwise variation from

the problem and the two-dimensional mean-flow equation (6.17)is therefore obtained. This

equation can be rescaled to eliminate the parameters a and M (see Goldstein & Choi 1989;

Wu, Lee & Cowley 1993; Leib & Lee 1994) so that the resulting solutions depend only on

the obliqueness angle 0 and the scaled viscous/growth-rate parameter _/a3.

The numerical results for the rescaled oblique-mode amplitude are relatively universal

and effectively the same as those given by Wu, Lee & Cowley (1993) in the viscous case

and by Goldstein & Choi (1989) in the inviscid limit. We therefore do not present any new
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Figure 4: Scaled neutral Strouhal number vs. downstream distance for a = 0.05. (a)

Bo = -12n,/_ = n/24, A = 0; (b) Bo = -9n,/_ = n/24, A = 0; (c) Bo = -16_t,/_ = _/18,

A = 0; (d) Bo = -12_r, _ = _r/24, A = 1/a 3.
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Figure 4: Scaled neutral Strouhal number vs. downstream distance for a = 0.05. (a)
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computations for A_, but merely note that, as was shown by Goldstein & Choi (1989), the

solutions, to (6.17) become singular at some finite downstream position, say xs, and that

the local asymptotic expansion in the vicinity of this singularity is

A' ~ a.( s - (7.5)

where as and _o are constants that are determined explicitly in Goldstein & Choi (1989).

This suggests that the initially linear instability waves can exhibit nonlinear break down

before the mean-flow distortion (which supports these waves) is able to decay. This is

analogous to the argument used by Cowley (1987) and Wu, Lee & Cowley (1993) to explain

the breakdown of Stokes layers which (unlike the experimentally observed flows) would

exhibit global stability over each oscillation cycle if nonlinear breakdown did not occur.

It is easy to solve the highly viscous amplitude equation (6.20) analytically and thereby

show that the oblique modes continue to grow linearly in this limit. However, this solution

shows that the wavenumber correction Re(a4AV/iA ?) increases exponentially with increas-

ing xl - indicating that the assumed wavenumber scaling must eventually break down. The

next stage of evolution should be governed by the full non-equilibrium equation (6.17). The

highly viscous solutions to this equation indicate that the explosive growth still occurs in

this case (Dr. Sang Soo Lee, private communication) - which suggests that explosive growth

will occur even when aR_ = O(1).

The amplitude B? of the spanwise-variable mean-flow distortion Re[Bt(xl)_(y, 5)] in-

duced on the external linear flow by the nonlinear critical-layer interactions is given by

Goldstein (1994) as

B t = bsF2 £(z I _ _l)e-]X(_'-_2)3 [A'(_2)12 d_2d_l, (7.6)
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which shows that B ? also becomes singular when xl --* xs and behaves like

B*~ lbsla, l:(x.- xl)-3 (7.7)

in this limit.

Equations (3.7), (3.15) (3.19), (3.33), (4.2), (4.11) and (6.2) show that this induced

spanwise-variable mean-flow velocity exceeds the initially imposed distortion velocity (in

both the wall layer and main boundary layer) when

x, - xl < a 2. (7.8)

The corresponding large amplitudes can occur without violating the present asymptotic

scaling because the instability wave growth is self-induced and does not depend on the

initial parametric growth once the oblique-mode amplitude becomes sufficiently large.

Of course, the oblique-mode amplitude and associated spanwise-variable mean-flow dis-

tortion cannot continue to increase indefinitely, and a new stage of evolution must eventually

be reached when, as pointed out by Goldstein & Lee (1992), the growth rate Re(a4At'/A ?)

becomes of the order of the wavelength scale a, i.e. when

• . -- Xl = O(ff3), (7.9)

which is much shorter than the length scale (7.8) at which the induced mean-flow distortion

exceeds the one imposed on the flow. The unsteady flow and spanwise distortions are now

O(aUoo) in this smaller region and evolve on the relatively short wavelength scale 5. The

resulting motion is, as noted in Goldstein & Lee (1992), primarily inviscid and determined

by the triple-deck equations (Stewartson 1969; Messiter 1970), but with no viscous terms

appearing in the nonlinear lower-deck equations. This latter region has the same thickness
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as the wall layer associated with the original vortex system. There must, of course_ be a thin

viscous region underlying the triple-deck structure. The flow in this lower region, which

is governed by the usual three-dimensional boundary-layer equations with the externally

imposed pressure gradients determined by the flow in the triple deck, can, as pointed out

by Smith & Burggraf (1985), undergo large scale separation. However, it would not be

possible to determine the flow in the triple deck, even if separation did not occur, because

the downstream boundary conditions for this effectively elliptic problem depend on the

downstream flow which is, in essence, turbulent in the situation of interest here.

While the relationship between the spanwise-wavelength scale a and the Reynolds

number R has not been completely fixed in the present analysis, we have required that

1 _, a > l/R]. (7.10)

The mean-flow distortion would be governed by the full three-dimensional triple-deck equa-

tions in the limit a ---*1/R]. The present scaling corresponds to the short-wavelength limit

of the triple-deck problem which was used by Rozhko & Ruban (1987) and subsequently by

Choudhari, Hall & Streett (1992) to study GSrtler vortices. However, the most appropri-

ate distinguished scaling for the present problem corresponds to the order-one-wavelength

limit a _ 1. We chose to consider the long-wavelength limit a <<( 1 in the hope that the

analytical solutions that were obtainable in this limit would lead to a better understanding

of the physical mechanisms involved.

Large scale numerical computations are required when a = 1 since the spanwise-

variable mean flow (3.3) and (3.4) can only be determined by solving the paraboUzed

Navier-Stokes equations (3.5) and (3.6). The relevant solutions still grow linearly with
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increasingdownstreamdistancewhen x2 is sufficiently small. In fact they are still given by

(3.7)-(3.10), but with a and b set equal to unity and with UD, VD, WD and Pn given by

(3.54), (3.17) and (3.55), respectively. This shows that the algebraic growth of the steady

distortion is still important when a = 1.

While the initial linear instability wave can still be determined from the generalized

Rayleigh equation (4.15) once the mean-flow velocity U is known, the relevant solutions must

now be found numerically since a = 1. However, the long-wavelength solutions of (4.15)

show that there is an effective upper branch to the neutral stability curve (see figure 3) -

primarily because the mean-flow distortion ultimately decays to zero and thereby causes the

inviscid instability wave growth rate (which is produced by this distortion) to vanish long

before this decay is complete. Since this behavior also occurs when a = 1, all instability

waves with sufficiently small initial amplitudes will now remain linear until their growth

rates become sufficiently small. (Recall that the nonlinear amplitude of the instability waves

scales with the growth rate and nonlinearity therefore occurs at smaller amplitudes when

the growth rates become smaller.)

The nonlinearity will then occur within a thin critical layer with the solutions outside

this layer still given by (4.11) and (4.15)-(4.20). Hall & Horseman (1991), Horseman (1991)

and Hall & Smith (1991) have studied the local criticai-level behavior of the solutions to

the generalized Rayleigh equation and have shown that it is nearly identical to that of the

usual three-dimensional solutions to the Rayleigh equation for strictly two-dimensional mean

flows. In a sense, all solutions of the Rayleigh problem for spanwise-variable mean flows

behave like three-dimensional solutions to the Rayleigh problem for strictly two-dimensionai

mean flows in the vicinity of their critical levels. This is most easily shown by expressing
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(4.15)in orthogonal curvilinear coordinates with one set of coordinate surfaces correspond-

ing to surfaces of constant mean-flow velocity U - as was done, for example, by Goldstein

(1976, pp. 6-10).

The similarity of the solutions within the critical layer itself is even more dramatic. The

critical-layer nonlinearity is still weak in the sense that it enters through an inhomogeneous

term in a higher-order problem rather than through a coefficient in the lowest-order or

dominant-balance equation and the instability wave amplitude At(xl) can therefore still be

determined from a single amplitude-evolution equation, which is again given by (6.17) but

with the inviscid kernel function K (which is still a simple polynomial of the streamwise

coordinate) given by a slight generalization of the result (6.19).

Appendix A. Solutions for _(i) and l?d(_)

In this appendix, solutions for _(1) and F_V(1) are constructed by first substituting

(3.44) into (3.37) and (3.39)-(3.43) and then taking the Laplace transform of the resulting

equations with respect to x2 to obtain

and

where

AosYW (1) + PD_ I]/(l)= ,,yy,

AosYO_) A01)V(1) fr(')-- -- wyyy ,

W(1) = (1(1) fr(O.._ ,..,yy ----- 0 at

o, 0(')

/0 °°
(') = e-SX (• )d 2

(AI)

Y--O,

(A2)

(A3)

as Y _ oo, (A4)

(A5)
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denotesthe Laplacetransformwith respect to x2,

C, =- nlimoo(F - In _?), (A7)

and _b denotes the digamma function defined on page 258 of Abramowitz & Stegun (1964).

The relevant solutions to (A 1) and (A 2) are

¢¢(') = - .(A0s)-_ bo_ [Gi(0) - 3-_ Ai(_)], (A 8)

and

where _ -- (A0s)_Y and Ai and Gi are the Airy functions defined on pages 446 and 448

of Abramowitz & Stegun (1964). It follows from (A4), (A9) and the asymptotic behavior

of the Airy functions for large values of their argument (Abramowitz & Stegun 1964, pp.

448-450) that

s - t " -Q_') s}_l (A10)(9A0) = -

which can be inverted to give (3.51).

Before inverting (A8) and (A9), it is convenient to rewrite these equations as

and

(A 11)

7}= (Ao/X2)_Y determined by

1 2 (I)'
G (I)" + 5r/ G = -1,

1 2 I) tt 1 -- ['(I) t 1 (I) t
F (_)" + _7 F( + -5'1" = -5 _?G '
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(A 13)

[1(,)= r(½)-l(Aos)-t (A 12)

where G(*) and l5(_) are the Laplace transforms with respect to x2 of the functions of



with

and

G (1)=F (I)= F (1)'=0 at _}=0, (A14)

It follows from these equations that

G(I) 3-_F 1 1 _o "r= (_)7(5, r) + 3-i t-ie-tT(½, -t)dt, (i 16)

and

Z"_'_ -- -3-_r(_)r(_)l_ -1 ¢-_e-'V(_, _,0at + a(,) (A17)

where r = 7/3/9 and U denotes the confluent hypergeometric function in the notation of

Abramowitz & Stegun (1964, p. 504). Using (A 10) when inverting (A 12) then leads to

(3.52).

Appendix B. Mean-flow solution for x = O(a)

In this appendix, we briefly discuss the mean-flow solution in the streamwise region

characterized by (3.56). The lowest-order main-deck velocity field is a simple re-expansion

of the solution (3.15)-(3.17) but, as can be anticipated from (3.29) and (3.55), with the

particle displacement .,4 set equal to zero (i.e. it is now of higher order). Equation (3.55)

also implies that the pressure in this region should expand like

p =_AYt-IR-½[_ +... (B 1)

where A ----a-_R-_ << 1, zl _ 1/ln A and/SD is a function of& and 5 that has the implicit

A dependence
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Equations(3.7), (3.15)and (3.56)imply that the streamwisevelocity distortion is now

O(R-½), i.e. of the same order as the imposed cross-flow velocity that produced it.

The main difference from the x = O(a3R ½) solution comes in the viscous wall layer

which now corresponds to

- y/A = O(i). (B3)

The velocity in this region expands like

U = A)_o? + Oh-'R-½ _ +...,

V = aoAh-'R-½fz +...,

W = Oh-'R-½W +...,

(B4)

(B5)

(B6)

where, like /SD, the functions U, _', and l)d of &, ]Y, and 5 depend implicitly on A. The flow

in this region is determined by

_07_¢, + Po_= w_, (Ds)

with

/__=_=I)V=0 at ]Y=0, (B10)

--+ 21B, 0 --, ,h&B'ln(AY) as Y --*oo, (B 11)

and

/_7--} 0, I,;d --* ,AB as ._ --+ 0. (B 12)
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The only difference from (3.36)-(3.41) is that the pressure gradient now appears in the

streamwise momentum equation (B 7) and the particle displacement _4 does not appear in

the boundary condition (B 11). This means that the pressure is completely determined by

the solution in the lower deck and the now higher-order particle displacement is determined

after the fact from the upper-deck problem. The solution procedure is essentially the same

as before. Since the similarity variable 7/remains order one when expressed in terms _ and

I_', it is again appropriate to seek a solution of the form

= _&B'(5)F(_7) + U(')(&, Y, 5; A), I_V= _B(5)G(_7) + I)V(')(&, Y, 5; A) (B 13)

where the Laplace transforms of DV(_) and U(') are determined by (h 1) and (A2) but with

Y replaced by Y and with the boundary conditions now given by

_'r(l) = U(l) =0, _f(I)=,._PD--PD(O,z;A ) at Y=0, (B14)

and

I)V(_) _ 0, _(I) ._, _oQ(6)(s,_; A) as I7"_ _, (B 15)

where (_(ra)(s, _'; A) determined from (A6).

It therefore follows that I)V(I) is still given by (A 8) but with # = (_oS)}l_', while _'(_)

is now

Substituting this result into (B 15) and using the asymptotic behavior of the Airy functions

for large values of their arguments (Abramowitz _ Stegun 1964, pp. 448-450) shows that

+ 8 P. - sP (0, :; = -01i)(s, (B 17)
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andsince(B 7),(B 10)and(B 12)implythat/3D_(0,_; ,5) = 0, this equation can be inverted

to give

+ = (BlS)

where Q(m)(_, £; A) is determined from (3.53). The solution to (B 18) that matches onto

(3.55) as _ -* oo is

--2_-_ fo_/_S0°°Q(1)(_,_; z_)Re{cot_[2 - _ -{-i(x-_)]

+cot/_[5- (+i(_ + _)]}d_d( (819)

where :_ denotes the Cauchy principal value.
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